Расчет и выбор виброизоляторов

Рассчитать резиновые виброизоляторы под вентиляционный агрегат, если вес агрегата P, число оборотов ротора – n

Таблица 10

Исходные данные для расчета

№ варианта	P , H	п ,об/мин	№ варианта	P , H	п ,об/мин
1	10000	1200	6	7500	2400
2	12000	1500	7	8500	2500
3	11000	1800	8	14500	2000
4	13000	2000	9	10500	2300
5	9000	2100	10	13000	1700

Методические указания к решению задачи

1. Определив частоту возбуждающей силы (основную оборотную частоту $f = n_{\theta}/60$ с⁻¹, где n_{θ} – число оборотов ротора в минуту), находим допустимую собственную частоту системы

$$f_0 = \frac{f}{m},\tag{4.1}$$

где m = 3...4 — оптимальное соотношение между частотой возбуждения и собственной частотой колебаний системы, обеспечивающее достаточно эффективную виброизоляцию.

2. Необходимая площадь резиновых виброизоляторов

$$S_{\Sigma} = \frac{P}{|G|},\tag{4.2}$$

где [G]— допускаемое напряжение в резине, $[G] = (3...5)*10^5$ Па (при твердости по Шору — 60 и модуле упругости $E_{cm} = 5*10^6$ Па).

3. Задавшись числом виброизоляторов n, определяют площадь каждого из них

$$S_i = \frac{S_{\Sigma}}{n} \tag{4.3}$$

и поперечный размер прокладки диаметр D или сторону квадрата B;

$$B = \sqrt{S}; \quad D = \sqrt{\frac{4S}{\pi}}. \tag{4.4}$$

4. Рабочая толщина виброизолятора

$$h_p = \frac{x_{cm} \cdot E_{cm}}{[G]},\tag{4.5}$$

где x_{cm} — статическая осадка амортизатора;

$$x_{cm} = \frac{g}{(2\pi f_0)^2},\tag{4.6}$$

где ${m g}$ — ускорение свободного падения, ${m g}=9{,}81$ м/с 2 ;

 E_{cm} – статический модуль упругости резины; E_{cm} = $(4...5)*10^6$ Па.

5. Полная толщина виброизолятора

$$h = h_p + \frac{B}{8}. \tag{4.7}$$

Если окажется, что h > 1,2 B, то нужно соответственно изменить число виброизоляторов или сорт резины и повторить расчет.

6. Эффективность виброизоляции, дБ,

$$\Delta L = 20 \lg(1/K\Pi); \tag{4.8}$$

где КП – коэффициент передачи,

$$\mathbf{KH} = \frac{1}{\left(\frac{f}{f_0}\right)^2 - 1}.\tag{4.9}$$

7. Составить схему размещения виброизоляторов.